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Stereoselective synthesis of 3,4-trans-disubstituted pyrrolidines
and cyclopentanes via intramolecular radical cyclizations

mediated by CAN
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Abstract—The stereoselective intramolecular cyclizations of bis(cinnamyl)tosylamides and dimethyl bis(cinnamyl)malonates medi-
ated by cerium(IV) ammonium nitrate leading to the synthesis of 3,4-trans-disubstituted pyrrolidines and cyclopentanes are
described.
� 2006 Elsevier Ltd. All rights reserved.
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Scheme 1. Reagents and conditions: (i) CAN (2.5 equiv), MeOH, O2,
2 h, 43%.
In recent years, cerium(IV) ammonium nitrate (CAN)
has emerged as an important reagent for the construc-
tion of carbon–carbon and carbon–heteroatom bonds
via radical intermediates.1–7 Most of this chemistry,
however, has involved intermolecular reactions; intra-
molecular reactions have received only limited atten-
tion.8–11 In the course of our investigations in this
area, it was observed that CAN is an excellent reagent
for the stereoselective synthesis of functionalized tetra-
hydrofurans, tetrahydropyrans, and piperidines.12 The
efficiency and stereoselectivity observed in these reac-
tions prompted us to examine the scope of the CAN
mediated cyclization in the synthesis of pyrrolidine ring
systems. It is noteworthy that pyrrolidine frameworks
constitute important structural units of a number of nat-
ural and unnatural biologically active compounds and
thus the stereoselective synthesis of functionalized pyrro-
lidines has been a topic of current interest.13 The preli-
minary results of our investigations are presented in this
Letter.

The substrate chosen for our initial experiments was
N-cinnamyl-N-tosyl-2-methoxycinnamyl amine 1. Treat-
ment of 1 with CAN in methanol resulted in the selective
formation of 3,4-trans-disubstituted pyrrolidine 2a in
moderate yield (Scheme 1).14
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In the IR spectrum of 2a, a strong absorption at
1683 cm�1 indicated the presence of a benzoyl group,
which was established by a signal at d 198.6 in its 13C
NMR spectrum. In the 1H NMR spectrum, the benzylic
proton resonated as a doublet at d 4.52 (J = 7.8 Hz).
The final confirmation of the structure and stereochem-
istry of 2a was obtained from single crystal X-ray anal-
ysis (Fig. 1).

To explore the generality of the reaction, experiments
were conducted with various substituted bis(cinnam-
yl)amines and the results of these investigations are
presented in Table 1.

A proposed mechanistic pathway for the formation of
the pyrrolidine derivatives is given in Scheme 2. On
exposure to Ce(IV), the methoxystyrenyl moiety under-
goes single electron oxidation giving a transient radical
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Table 1.

Entry Substrate Product Yield (%)
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Figure 1. Single crystal X-ray structure of compound 2a.
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cation III. Conceivably it exists in equilibrium with its
cyclic version IV. The radical and cationic centers of
the latter intermediate are quenched by oxygen and
methanol, respectively, to provide the pyrrolidine deriv-
ative. It is noteworthy that methanol attacks the cation
from one face selectively providing a single diastereo-
isomer. This stereochemical outcome cannot be easily
explained. One possibility is that the cationic center is
being stabilized by the sulfonyl oxygen to afford the
transient intermediate V, thus predisposing the metha-
nol attack from a single face to deliver the observed
product.

Encouraged by the successful stereoselective synthesis of
3,4-trans-disubstituted pyrrolidines, we turned our
attention to the synthesis of cyclopentanes. In view of
their presence in a number of biologically important
compounds, there has been considerable interest in
devising new strategies for the stereoselective synthesis
of cyclopentanes.15 The cyclization-substrate selected
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Figure 2. Single crystal X-ray structure of compound 4a.

Table 2.

Entry Substrate Product Yield (%)
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Scheme 3. Reagents and conditions: (i) CAN (2.5 equiv), MeOH, O2,
2 h, 35%.
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for the initial study was dimethyl a-cinnamyl-a-(2-meth-
oxycinnamyl)-malonate 3. This, on exposure to a meth-
anolic solution of CAN, resulted in the stereoselective
formation of the cyclopentane derivative 4a in moderate
yield (Scheme 3).16

The structure of the product was elucidated from its
spectroscopic data. In the IR spectrum, the ester and
benzoyl groups showed strong absorptions at 1735 and
1680 cm�1, respectively. In the 13C NMR spectrum,
the resonances due to the benzoyl and ester carbonyl
groups were observed at d 197.3 and 163.9, respectively.
In its 1H NMR spectrum, the benzylic proton resonated
as a doublet at d 4.49 (J = 5.7 Hz). Final proof for the
structure assigned for 4a was derived from single crystal
X-ray analysis (Fig. 2).

The reaction was studied with four other substrates and
the results are given in Table 2.

In conclusion, CAN has been successfully employed in
intramolecular cyclization reactions leading to the syn-
thesis of pyrrolidines and cyclopentanes in moderate
yields.
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